Physical and Statistical Links between Errors at the Surface, in the Boundary Layer, and in the Free Atmosphere in Medium-Range Numerical Weather Predictions

Author:

Bélair Stéphane1ORCID,Alavi Nasim1,Leroyer Sylvie1ORCID,Carrera Marco L.1,Abrahamowicz Maria1,Bilodeau Bernard1,Simjanovski Dragan2,Charpentier Dorothée2,Badawy Bakr2ORCID

Affiliation:

1. Environment and Climate Change Canada, Atmospheric Science and Technology, Dorval, QC H9P 1J3, Canada

2. Environment and Climate Change Canada, Canadian Centre for Meteorological and Environmental Prediction, Dorval, QC H9P 1J3, Canada

Abstract

The adequate representation of interactions between the land surface and the atmosphere is of crucial importance in modern numerical weather prediction (NWP) systems. In this context, this study examines how errors in the planetary boundary layer (PBL) depend on the quality of near-surface prediction over land for medium-range NWP. Two series of 10-day forecasts from Environment and Climate Change Canada (ECCC)’s global deterministic prediction system were evaluated: one similar to what is currently used in ECCC’s operational systems and the other with improved land surface modeling and land data assimilation. An objective evaluation was performed for the 2019 summer season in North America, with a special emphasis on three specific areas: northern Canada, the central US, and the southeastern US. The results indicate that the impact of the new land surface package is more difficult to interpret in the PBL than it is at the screen level. The error differences between the two experiments are quite distinct for the three regions examined. As expected, random errors (standard deviations) for air temperature and specific humidity in the PBL are directly linked with their own random errors at the screen level, with correlation coefficients decreasing from a value of one at the surface to values of about 0.2–0.3 a few kilometers above the surface. Less expected, however, is the fact that random errors in the lower atmosphere also strongly depend on changes in air temperature biases at the surface. Warmer near-surface conditions lead to increased random errors for air temperature in the lower atmosphere, in association with the development of the deeper PBL, with greater spatial variability. This finding is of particular interest when evaluating new configurations of NWP systems for implementation in national meteorological and environmental prediction centers.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3