Application of Deep Learning to Understanding ENSO Dynamics

Author:

Shin Na-Yeon1,Ham Yoo-Geun2,Kim Jeong-Hwan2,Cho Minsu3,Kug Jong-Seong1

Affiliation:

1. a Division of Environmental Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea

2. b Department of Oceanography, Chonnam National University, Gwangju, South Korea

3. c Department of Computer Science and Engineering, Pohang University of Science and Technology, Pohang, South Korea

Abstract

Abstract Many deep learning technologies have been applied to the Earth sciences. Nonetheless, the difficulty in interpreting deep learning results still prevents their applications to studies on climate dynamics. Here, we applied a convolutional neural network to understand El Niño–Southern Oscillation (ENSO) dynamics from long-term climate model simulations. The deep learning algorithm successfully predicted ENSO events with a high correlation skill (∼0.82) for a 9-month lead. For interpreting deep learning results beyond the prediction, we present a “contribution map” to estimate how much the grid box and variable contribute to the output and “contribution sensitivity” to estimate how much the output variable is changed to the small perturbation of the input variables. The contribution map and sensitivity are calculated by modifying the input variables to the pretrained deep learning, which is quite similar to the occlusion sensitivity. Based on the two methods, we identified three precursors of ENSO and investigated their physical processes with El Niño and La Niña development. In particular, it is suggested here that the roles of each precursor are asymmetric between El Niño and La Niña. Our results suggest that the contribution map and sensitivity are simple approaches but can be a powerful tool in understanding ENSO dynamics and they might be also applied to other climate phenomena.

Funder

National Research Foundation of Korea

Publisher

American Meteorological Society

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3