Changes in United States Summer Temperatures Revealed by Explainable Neural Networks

Author:

Labe Zachary M.1ORCID,Johnson Nathaniel C.2ORCID,Delworth Thomas L.2ORCID

Affiliation:

1. Atmospheric and Oceanic Sciences Program Princeton University Princeton NJ USA

2. NOAA/OAR/Geophysical Fluid Dynamics Laboratory Princeton NJ USA

Abstract

AbstractTo better understand the regional changes in summertime temperatures across the conterminous United States (CONUS), we adopt a recently developed machine learning framework that can be used to reveal the timing of emergence of forced climate signals from the noise of internal climate variability. Specifically, we train an artificial neural network (ANN) on seasonally averaged temperatures across the CONUS and then task the ANN to output the year associated with an individual map. In order to correctly identify the year, the ANN must therefore learn time‐evolving patterns of climate change amidst the noise of internal climate variability. The ANNs are first trained and tested on data from large ensembles and then evaluated using observations from a station‐based data set. To understand how the ANN is making its predictions, we leverage a collection of ad hoc feature attribution methods from explainable artificial intelligence (XAI). We find that anthropogenic signals in seasonal mean minimum temperature have emerged by the early 2000s for the CONUS, which occurred earliest in the Eastern United States. While our observational timing of emergence estimates are not as sensitive to the spatial resolution of the training data, we find a notable improvement in ANN skill using a higher resolution climate model, especially for its early twentieth century predictions. Composites of XAI maps reveal that this improvement is linked to temperatures around higher topography. We find that increases in spatial resolution of the ANN training data may yield benefits for machine learning applications in climate science.

Funder

NOAA Research

Climate Program Office

Publisher

American Geophysical Union (AGU)

Subject

Earth and Planetary Sciences (miscellaneous),General Environmental Science

Reference184 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3