Non-linear modes of global sea surface temperature variability and their relationships with global precipitation and temperature

Author:

Ibebuchi Chibuike ChiedozieORCID,Richman Michael BORCID

Abstract

Abstract Sea surface temperature (SST) modes are comprised of variability that arises from inherently nonlinear processes. Historically, a limitation arises from applying linear statistics to define these modes. Accurate depiction of the complex, non-linear nature of SST modes of variability necessitates the specification of a model capable of producing nonlinear patterns. In this study, we apply an artificial neural network algorithm integrated with autoencoders to analyze the seasonal non-linear global SST modes allowing for improved characterization of the modes and their large-scale temperature and precipitation teleconnections. Our results show that during boreal summer, SST cooling over the central to eastern tropical Pacific co-occurs with the Arctic amplification. In recent decades, the negative SST trend in the central to eastern tropical Pacific, combined with the positive trend in the western tropical Pacific is linked to an increase in the amplitude of SST modes associated with the Arctic warming, resulting in warmer temperatures over large portions of the global land, particularly over Greenland. In boreal winter, El Niño Southern Oscillation (ENSO) is the prominent global SST mode. The distinct spatiotemporal patterns of ENSO modes are associated with unique effects on regional land temperature and precipitation. The central Pacific El Niño is more associated with the combination of warm and dry conditions over Western Australia, and the northern part of South America. Conversely, the central to eastern El Niño is more associated with the combination of warm and dry conditions over parts of Southern Africa, and the northern part of South America. The spatiotemporal patterns and trends in the amplitude of the analyzed non-linear global SST modes alongside their regional influences on temperature and precipitation are discussed. The broader impact of this study is on the potential of neural networks in effectively delineating non-linear global SST modes and their associations with regional climates.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3