A self-attention–based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions

Author:

Zhou Lu1ORCID,Zhang Rong-Hua23ORCID

Affiliation:

1. Key Laboratory of Ocean Circulation and Waves, Institute of Oceanology, and Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China; and University of Chinese Academy of Sciences, Beijing 10029, China.

2. School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China.

3. Laoshan Laboratory, Qingdao 266237, China.

Abstract

Large biases and uncertainties remain in real-time predictions of El Niño–Southern Oscillation (ENSO) using process-based dynamical models; recent advances in data-driven deep learning algorithms provide a promising mean to achieve superior skill in the tropical Pacific sea surface temperature (SST) modeling. Here, a specific self-attention–based neural network model is developed for ENSO predictions based on the much sought-after Transformer model, named 3D-Geoformer, which is used to predict three-dimensional (3D) upper-ocean temperature anomalies and wind stress anomalies. This purely data-driven and time-space attention-enhanced model achieves surprisingly high correlation skills for Niño 3.4 SST anomaly predictions made 18 months in advance and initiated beginning in boreal spring. Further, sensitivity experiments demonstrate that the 3D-Geoformer model can depict the evolution of upper-ocean temperature and the coupled ocean-atmosphere dynamics following the Bjerknes feedback mechanism during ENSO cycles. Such successful realizations of the self-attention–based model in ENSO predictions indicate its great potential for multidimensional spatiotemporal modeling in geoscience.

Publisher

American Association for the Advancement of Science (AAAS)

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3