CNN‐Based ENSO Forecasts With a Focus on SSTA Zonal Pattern and Physical Interpretation

Author:

Sun Ming1,Chen Lin1ORCID,Li Tim12ORCID,Luo Jing‐Jia3ORCID

Affiliation:

1. Key Laboratory of Meteorological Disaster Ministry of Education (KLME)/Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC‐FEMD) Nanjing University of Information Science and Technology Nanjing China

2. Department of Atmospheric Sciences University of Hawaii at Manoa Honolulu HI USA

3. Institute for Climate and Application Research/Joint International Research Laboratory of Climate and Environment Change/CIC‐FEMD/KLME Nanjing University of Information Science and Technology Nanjing China

Abstract

AbstractDeep learning (DL) has achieved notable success in El Niño‐Southern Oscillation (ENSO) forecasts. Most DL‐based models focused on forecasting ENSO indices while the zonal distribution of sea surface temperature anomalies (SSTA) over the equatorial Pacific was overlooked. To provide accurate predictions for the SSTA zonal pattern, this study developed a model through leveraging the merits of the cosine distance in constructing the convolutional neural network. This model can skillfully predict the SSTA zonal pattern over the equatorial Pacific 1 year in advance, remarkably outperforming current dynamical models. Moreover, the physical interpretation of the model prediction reveals that the sources for ENSO predictability at different lead times are distinct. For the 10‐month‐lead predictions, the precursors in the north Pacific, south Pacific and tropical Atlantic play critical roles in determining the model behaviors; while for the 16‐month‐lead predictions, the initial signals in the tropical Pacific associated with the discharge‐recharge cycle are essential.

Funder

National Natural Science Foundation of China

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3