ENSO‐Related Precursor Pathways of Interannual Thermal Anomalies Identified Using a Transformer‐Based Deep Learning Model in the Tropical Pacific

Author:

Zhou Lu12ORCID,Zhang Rong‐Hua234ORCID

Affiliation:

1. Key Laboratory of Ocean Circulation and Waves Institute of Oceanology Chinese Academy of Sciences Qingdao China

2. University of Chinese Academy of Sciences Beijing China

3. School of Marine Sciences Nanjing University of Information Science and Technology Nanjing China

4. Laoshan Laboratory Qingdao China

Abstract

AbstractRecent studies have demonstrated great values of deep‐learning (DL) methods for improving El Niño‐Southern Oscillation (ENSO) predictions. However, the black‐box nature of DL makes it challenging to physically interpret mechanisms responsible for successful ENSO predictions. Here, we demonstrate an interpretable method by performing perturbation experiments to predictors and quantifying input‐output relationships in predictions by using a transformer‐based model; ENSO‐related thermal precursors serving as initial conditions during multi‐month time intervals (TIs) are identified in the equatorial‐northern Pacific, acting to precondition input predictors to provide for long‐lead ENSO predictability. Results reveal the existence of upper‐ocean temperature anomaly pathways and consistent phase propagations of thermal precursors around the tropical Pacific. It is illustrated that three‐dimensional thermal fields and their basinwide evolution during long TIs act to enhance long‐lead prediction skills of ENSO. These physically explainable results indicate that neural networks can adequately represent predictable precursors in the input predictors for successful ENSO predictions.

Funder

National Natural Science Foundation of China

Startup Foundation for Introducing Talent of Nanjing University of Information Science and Technology

Publisher

American Geophysical Union (AGU)

Reference49 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3