A Comparison of SNOTEL and GHCN/CRU Surface Temperatures with Free-Air Temperatures at High Elevations in the Western United States: Data Compatibility and Trends

Author:

Pepin N. C.1,Losleben M.2,Hartman M.3,Chowanski K.2

Affiliation:

1. Department of Geography, University of Portsmouth, Portsmouth, United Kingdom

2. University of Colorado Mountain Research Station, Nederland, Colorado

3. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Abstract

Abstract This paper compares high-elevation surface temperatures based on the Global Historical Climate Network/Climatic Research Unit (GHCN/CRU) and snow telemetry (SNOTEL) datasets, with simultaneous free-air equivalent temperatures, interpolated from NCEP–NCAR reanalysis. Mean monthly temperature anomalies from 1982 to 1999 are examined for 60 SNOTEL and 296 GHCN/CRU sites at elevations over 500 m with relatively homogenous records. The surface/free-air temperature difference ΔT (Ts − Ta) is calculated for both the SNOTEL and GHCN/CRU datasets. Topography influences the correlation between surface and free-air temperature anomalies. Physically realistic diurnal and seasonal changes in ΔT\E are illustrated. Systematic secular trends in surface temperatures, free-air temperatures, and ΔT are revealed, but the sign and magnitude of change depends on location, meaning that regional signals are weak. The Ts trends are positive for most GHCN and CRU sites, and for SNOTEL sites at night. Daytime cooling in the SNOTEL network reduces the mean daily warming trend. The Ta trends are consistently positive for both networks and are often larger than Ts. Thus mean ΔT trends are negative for both datasets. The smaller sample size in the SNOTEL dataset means that error estimates for regional signals are much wider than for the GHCN/CRU dataset. Trend difference maps identify potentially anomalous SNOTEL records. Trends show no correlation with elevation and topography. Surface trends show higher variability and account for most of the uncertainty in ΔT trends. Sensitivity of trends to time period is also discussed. Such changes in the free-air/surface temperature difference may indicate change in the energy balance of mountain areas.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3