GEMS v1.0: Generalizable Empirical Model of Snow Accumulation and Melt, based on daily snow mass changes in response to climate and topographic drivers

Author:

Umirbekov Atabek,Essery RichardORCID,Müller DanielORCID

Abstract

Abstract. Snow modelling is often hampered by the availability of input and calibration data, which can affect the choice of models, their complexity, and transferability. To address the trade-off between model parsimony and transferability, we present the Generalizable Empirical Model of Snow Accumulation and Melt (GEMS), a machine-learning-based model, which requires only daily precipitation, temperature or its daily diurnal cycle, and basic topographic features to simulate snow water equivalent (SWE). The model embeds a support vector regression pretrained on a large dataset of daily observations from a diverse set of the SNOwpack TELemetry Network (SNOTEL) stations in the United States. GEMS does not require any user calibration, except for the option to adjust the temperature threshold for rain–snow partitioning, though the model achieves robust simulation results with the default value. We validated the model with long-term daily observations from numerous independent SNOTEL stations not included in the training and with data from reference stations of the Earth System Model–Snow Model Intercomparison Project. We demonstrate how the model advances large-scale SWE modelling in regions with complex terrain that lack in situ snow mass observations for calibration, such as the Pamir and Andes mountains, by assessing the model's ability to reproduce daily snow cover dynamics. Future model improvements should consider the effects of vegetation, improve simulation accuracy for shallow snow in warm locations at lower elevations, and possibly address wind-induced snow redistribution. Overall, GEMS provides a new approach for snow modelling that can be useful for hydroclimatic research and operational monitoring in regions where in situ snow observations are scarce.

Funder

Volkswagen Foundation

Direktion für Entwicklung und Zusammenarbeit

Publisher

Copernicus GmbH

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3