Elevation‐dependent warming and possible‐driving mechanisms over global highlands

Author:

Abbas Haider123ORCID,Daramola Mojolaoluwa Toluwalase12ORCID,Xu Ming124

Affiliation:

1. Synthesis Research Centre of Chinese Ecosystem Research Network, Key Laboratory of Ecosystem Network Observation and Modelling, Institute of Geographic Sciences and Natural Resources Research Chinese Academy of Sciences Beijing China

2. University of Chinese Academy of Sciences (UCAS) Beijing China

3. Guangdong‐Hong Kong Joint Laboratory for Carbon Neutrality Jiangmen Laboratory of Carbon Science and Technology Jiangmen China

4. BNU‐HKUST Laboratory for Green Innovation, Advanced Institute of Natural Sciences Beijing Normal University at Zhuhai Zhuhai China

Abstract

AbstractElevation‐dependent warming (EDW) has been a topic of intense debate due to limited observed data in global highland areas. This study aims to fill this gap by utilizing CRU and ERA5 datasets from 1981 to 2021 to explore the trends of climate change and its elevation dependency. The anomalies of temperature indicators (Tmean, Tmax, and Tmin) in both ERA5 and CRU showed significant warming trends over global highlands. Moreover, the response of temperature indicators to elevation across global highlands is not spatially uniform. The linear regression model based on the elevation showed significant warming signals for the temperature indicators at various elevations over the global highlands. On a regional scale, Tmean and Tmax predominantly showed linear EDW over EU highlands, while Tmean in Asian highlands exhibited EDW signals at 4–5 km. Tmin showed EDW at 2.5–5.5 km with ERA5 and 3–5 km with CRU. In the Andes, EDW was prominent at 2.5–4 km. Overall, EDW signals are evident in all studied regions but vary across them. While assessing the driving factors, the results of this study indicate that total column water vapour (TCWV), snow depth (SD), snow albedo, and normalized difference vegetation index (NDVI) correlated positively with the temperature indicators. These findings emphasize the significance of elevation‐specific interactions between environmental factors and temperature in forecasting temperature changes in mountainous areas. Additionally, temperature exhibited coherence with teleconnection indices from the Atlantic and Pacific Oceans. Asian and European (EU) highlands exhibited interzonal coherence with the Pacific and Atlantic Oceans, while North American (NA) highlands showed coherence, followed by South American (SA) highlands. These findings provide a comprehensive understanding of EDW and its implications for highland regions globally, including the potential for more severe depletion of snow/ice resources in a warmer future.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Reference145 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3