Mechanisms Controlling the Downstream Poleward Deflection of Midlatitude Storm Tracks

Author:

Tamarin Talia1,Kaspi Yohai1

Affiliation:

1. Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel

Abstract

Abstract The Atlantic and Pacific storm tracks in the Northern Hemisphere are characterized by a downstream poleward deflection, which has important consequences for the distribution of heat, wind, and precipitation in the midlatitudes. In this study, the spatial structure of the storm tracks is examined by tracking transient cyclones in an idealized GCM with a localized ocean heat flux. The localized atmospheric response is decomposed in terms of a time- and zonal-mean background flow, a stationary wave, and a transient eddy field. The Lagrangian tracks are used to construct cyclone composites and perform a spatially varying PV budget. Three distinct mechanisms that contribute to the poleward tilt emerge: transient nonlinear advection, latent heat release, and stationary advection. The downstream evolution of the PV composites shows the different role played by the stationary wave in each region. In the region where the tilt is maximized, all three mechanisms contribute to the poleward propagation of the low-level PV anomaly associated with the cyclone. Upstream of that region, the stationary wave is opposing the former two, and the poleward tendency is therefore reduced. Finally, through repeated experiments with enhanced strength of the heating source, it is shown that the poleward deflection of the storms enhances when the amplitude of the stationary wave increases.

Funder

Israel Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference64 articles.

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3