Future changes in the extratropical storm tracks and cyclone intensity, wind speed, and structure
-
Published:2022-03-31
Issue:1
Volume:3
Page:337-360
-
ISSN:2698-4016
-
Container-title:Weather and Climate Dynamics
-
language:en
-
Short-container-title:Weather Clim. Dynam.
Author:
Priestley Matthew D. K.ORCID, Catto Jennifer L.
Abstract
Abstract. Future changes in extratropical cyclones and the associated storm tracks are uncertain. Using the new CMIP6 models, we investigate changes to seasonal mean storm tracks and composite wind speeds at different levels of the troposphere for the winter and summer seasons in both the Northern Hemisphere (NH) and Southern Hemisphere (SH). Changes are assessed across four different climate scenarios. The seasonal mean storm tracks are predicted to shift polewards in the SH and also in the North Pacific, with an extension into Europe for the North Atlantic storm track. Overall, the number of cyclones will decrease by ∼5 % by the end of the 21st century, although the number of extreme cyclones will increase by 4 % in NH winter. Cyclone wind speeds are projected to strengthen throughout the troposphere in the winter seasons and also summer in the SH, with a weakening projected in NH summer, although there are minimal changes in the maximum wind speed in the lower troposphere. Changes in wind speeds are concentrated in the warm sector of cyclones, and the area of extreme winds may be up to 40 % larger by the end of the century. The largest changes are seen for the SSP5-85 scenario, although a large amount of change can be mitigated by restricting warming to that seen in the SSP1-26 and 2-45 scenarios. Extreme cyclones show larger increases in wind speed and peak vorticity than the average-strength cyclones, with the extreme cyclones showing a larger increase in wind speed in the warm sector.
Funder
Natural Environment Research Council
Publisher
Copernicus GmbH
Reference84 articles.
1. Barnes, E. A. and Polvani, L.: Response of the Midlatitude Jets, and of Their
Variability, to Increased Greenhouse Gases in the CMIP5 Models, J.
Climate, 26, 7117–7135, https://doi.org/10.1175/JCLI-D-12-00536.1, 2013. a 2. Bengtsson, L., Hodges, K. I., and Roeckner, E.: Storm Tracks and Climate
Change, J. Climate, 19, 3518–3543, https://doi.org/10.1175/JCLI3815.1, 2006. a, b, c, d, e, f, g, h 3. Bengtsson, L., Hodges, K. I., and Keenlyside, N.: Will Extratropical Storms
Intensify in a Warmer Climate?, J. Climate, 22, 2276–2301,
https://doi.org/10.1175/2008JCLI2678.1, 2009. a, b, c, d, e, f 4. Binder, H., Boettcher, M., Joos, H., and Wernli, H.: The Role of Warm Conveyor
Belts for the Intensification of Extratropical Cyclones in Northern
Hemisphere Winter, J. Atmos. Sci., 73, 3997–4020,
https://doi.org/10.1175/JAS-D-15-0302.1, 2016. a 5. Bracegirdle, T. J., Holmes, C. R., Hosking, J. S., Marshall, G. J., Osman, M.,
Patterson, M., and Rackow, T.: Improvements in Circumpolar Southern
Hemisphere Extratropical Atmospheric Circulation in CMIP6 Compared to CMIP5,
Earth Space Sci., 7, e2019EA001065,
https://doi.org/10.1029/2019EA001065, 2020a. a
Cited by
73 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|