Affiliation:
1. Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel
Abstract
AbstractThe midlatitude storm tracks are of the most prominent features of extratropical climate. Despite the theoretical expectation, based on baroclinic instability theory, that baroclinic eddies strengthen with jet intensification, there is evidence that this relation breaks when the jet is particularly strong. The most known case is the Pacific midwinter minimum in storm track activity. To isolate the effect of jet strength on storm activity, we conduct a series of GCM experiments systematically varying jet intensity. The simulations are analyzed using Lagrangian tracking to understand the response from a single-eddy perspective. The Lagrangian analysis shows that while the response of upper-level eddies is dominated by a reduction in the amount of tracked features, the lower-level eddies’ response is also affected by a reduction in their lifetime. Analyzing the jet strength effect on the pairing between the upper- and lower-level eddies, we find that the jet intensification increases the relative speed of the upper-level eddies, breaking the baroclinic wave structure and limiting its growth. We show that the Lagrangian response correlates with a shift in the midlatitude spectrum to low wavenumbers. The shift settles these results with linear baroclinic instability theory, as under the stronger jet conditions synoptic-scale eddies are predicted to have a sub-optimal growth rate. These results can potentially explain the midwinter suppression of storm activity over the Pacific and the difference from the Atlantic response.
Publisher
American Meteorological Society
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献