Climatology of Storm Reports Relative to Upper-Level Jet Streaks

Author:

Clark Adam J.1,Schaffer Christopher J.1,Gallus William A.1,Johnson-O’Mara Kaj1

Affiliation:

1. Department of Geological and Atmospheric Sciences, Iowa State University, Ames, Iowa

Abstract

Abstract Using quasigeostrophic arguments and numerical simulations, past works have developed conceptual models of vertical circulations induced by linear and curved jet streaks. Because jet-induced vertical motion could influence the development of severe weather, these conceptual models, especially the “four quadrant” model for linear jet streaks, are often applied by operational forecasters. The present study examines the climatology of tornado, hail, and severe wind reports relative to upper-level jet streaks, along with temporal trends in storm report frequencies and changes in report distributions for different jet streak directions. In addition, composite fields (e.g., divergence, vertical velocity) are analyzed for jet streak regions to examine whether the fields correspond to what is expected from conceptual models of curved or linear jet streaks, and whether the fields help explain the storm report distributions. During the period analyzed, 84% of storm reports were associated with upper-level jet streaks, with June–August having the lowest percentages. In March and April the left-exit quadrant had the most storm reports, while after April the right-entrance quadrant was associated with the most reports. Composites revealed that tornado and hail reports are concentrated in the jet-exit region along the major jet axis and in the right-entrance quadrant. Wind reports have similar maxima, but the right-entrance quadrant maximum is more pronounced. Upper-level composite divergence fields generally correspond to what would be expected from the four-quadrant model, but differences in the magnitudes of the vertical velocity between the quadrants and locations of divergent–convergent centers may have resulted from jet curvature. The maxima in the storm report distributions are not well collocated with the maxima in the upper-level divergence fields, but are much better collocated with low-level convergence maxima that exist in both exit regions and extend into the right-entrance region. Composites of divergence–convergence with linear, cyclonic, and anticyclonic jet streaks also generally matched conceptual models for curved jet streaks, and it was found that wind reports have a notable maximum in the right-entrance quadrant of both anticyclonic and linear jet streaks. Finally, it was found that the upper-level divergence and vertical velocity in all jet-quadrants have a tendency to decrease as jet streak directions shift from SSW to NNW.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference40 articles.

1. A mechanism for assisting in the release of convective instability.;Beebe;Mon. Wea. Rev.,1955

2. Use of regression techniques to predict hail size and the probability of large hail.;Billet;Wea. Forecasting,1997

3. The step-mountain eta coordinate regional model: A documentation.;Black,1988

4. Synoptic–Dynamic Meteorology in Midlatitudes.;Bluestein,1993

5. Diagnosis of a jet streak in the vicinity of a severe weather outbreak in the Texas panhandle.;Bluestein;Mon. Wea. Rev.,1984

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3