Environmental Evolution of Supercell Thunderstorms Interacting with the Appalachian Mountains

Author:

Purpura Sarah M.1,Davenport Casey E.2,Eastin Matthew D.2ORCID,McKeown Katherine E.3,Riggin Roger R.2

Affiliation:

1. a Verisk Weather Solutions, Lexington, Massachusetts

2. b University of North Carolina at Charlotte, Charlotte, North Carolina

3. c The Pennsylvania State University, State College, Pennsylvania

Abstract

Abstract The Appalachian Mountains have a considerable impact on daily weather, including severe convection, across the eastern United States. However, the impact of the Appalachians on supercells is not well understood, posing a short-term forecast challenge across the region. While case studies have been conducted, there has been no large multicase analysis of supercells interacting with complex terrain. To address this gap, we examined 62 isolated warm-season supercells that occurred within the central or southern Appalachians. Each supercell was broadly classified as “crossing” or “noncrossing” based on their maintenance of supercellular structure during interaction with significant terrain features. Rapid Update Cycle (RUC) and the Rapid Refresh (RAP) model analyses were used to identify key synoptic and mesoscale factors that distinguish between environments supportive of crossing versus noncrossing supercells. Roughly 40% of supercells were sustained crossing significant terrain. Pre-storm synoptic features common among crossing storms (relative to noncrossing storms) included a stronger polar jet, a deeper trough, a north–south-oriented cold front, a strong prefrontal low-level jet, and no wedge front leeward of the terrain. Mesoscale environmental differences were determined using near-storm model soundings collected for each supercell at three locations: upstream initiation, peak terrain, and downstream dissipation. The most significant mesoscale differences were present in the peak and downstream environments, whereby crossing storms encountered stronger low-level vertical shear, greater storm-relative helicity, and greater midlevel moisture than noncrossing storms. Such results reenforce the notion that sustained dynamical support for mesocyclones is critical to supercell maintenance when interacting with significant terrain. Significance Statement The ability of isolated storms with rotating updrafts to traverse complex terrain is not well understood and is a notable forecast problem in the eastern United States due to the Appalachian Mountains. This study represents the first systematic analysis of numerous warm-season supercells in the vicinity of the central and southern Appalachians. We focus on synoptic and near-storm mesoscale environmental differences between storms that maintain supercellular structure following terrain interaction (“crossing”) and those that do not (“noncrossing”). The results provide useful environmental metrics for forecasting supercell longevity in the vicinity of the Appalachian Mountains.

Funder

National Weather Service

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference61 articles.

1. An empirical model relating U.S. monthly hail occurrence to large-scale meteorological environment;Allen, J. T.,2015

2. Appalachian cold-air damming;Bell, G. D.,1988

3. An hourly assimilation-forecast cycle: The RUC;Benjamin, S. G.,2004

4. A North American hourly assimilation and model forecast cycle: The Rapid Refresh;Benjamin, S. G.,2016

5. SHARPpy: An open-source sounding analysis toolkit for the atmospheric sciences;Blumberg, W. G.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3