Outcomes of the WMO Prize Challenge to Improve Subseasonal to Seasonal Predictions Using Artificial Intelligence

Author:

Vitart F.11,Robertson A. W.22,Spring A.33,Pinault F.1,Roškar R.44,Cao W.55,Bech S.66,Bienkowski A.77,Caltabiano N.5,De Coning E.5,Denis B.88,Dirkson A.99,Dramsch J.1,Dueben P.1,Gierschendorf J.1010,Kim H. S.7,Nowak K.1111,Landry D.10,Lledó L.6,Palma L.6,Rasp S.1212,Zhou S.7

Affiliation:

1. European Centre for Medium-Range Weather Forecasts, Reading, Berkshire, United Kingdom;

2. International Research Institute for Climate and Society, Columbia University, Palisades, New York;

3. Max Planck Institute for Meteorology, Hamburg, Germany;

4. Swiss Data Science Center, Zurich, Switzerland;

5. World Meteorological Organization, Geneva, Switzerland;

6. Barcelona Supercomputing Center, Barcelona, Spain;

7. University of Connecticut, Storrs, Connecticut;

8. Montreal, Quebec, Canada;

9. Environment and Climate Change Canada, Dorval, Quebec, Canada;

10. Computer Research Institute of Montreal, Montreal, Quebec, Canada;

11. Boulder Canyon Operations, Lower Colorado Region, Office of Reclamation, Boulder City, Nevada;

12. ClimateAI, Inc., San Francisco, California

Abstract

Abstract There is a high demand and expectation for subseasonal to seasonal (S2S) prediction, which provides forecasts beyond 2 weeks, but less than 3 months ahead. To assess the potential benefit of artificial intelligence (AI) methods for S2S prediction through better postprocessing of ensemble prediction system outputs, the World Meteorological Organization (WMO) coordinated a prize challenge in 2021 to improve subseasonal prediction. The goal of this competition was to produce the most skillful forecasts of precipitation and 2-m temperature globally averaged over forecast weeks 3 and 4 and over weeks 5 and 6 for the year 2020 using artificial intelligence techniques. The top three submissions, described in this article, succeeded in producing S2S forecasts significantly more skillful than the bias-corrected ECMWF operational reference forecasts, particularly for precipitation, through improved calibration of the ECMWF raw forecast outputs or multimodel combination. These forecast improvements should benefit the use of S2S forecasts in applications.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3