Calibrated Probabilistic Forecasting Using Ensemble Model Output Statistics and Minimum CRPS Estimation

Author:

Gneiting Tilmann1,Raftery Adrian E.1,Westveld Anton H.1,Goldman Tom1

Affiliation:

1. Department of Statistics, University of Washington, Seattle, Washington

Abstract

Abstract Ensemble prediction systems typically show positive spread-error correlation, but they are subject to forecast bias and dispersion errors, and are therefore uncalibrated. This work proposes the use of ensemble model output statistics (EMOS), an easy-to-implement postprocessing technique that addresses both forecast bias and underdispersion and takes into account the spread-skill relationship. The technique is based on multiple linear regression and is akin to the superensemble approach that has traditionally been used for deterministic-style forecasts. The EMOS technique yields probabilistic forecasts that take the form of Gaussian predictive probability density functions (PDFs) for continuous weather variables and can be applied to gridded model output. The EMOS predictive mean is a bias-corrected weighted average of the ensemble member forecasts, with coefficients that can be interpreted in terms of the relative contributions of the member models to the ensemble, and provides a highly competitive deterministic-style forecast. The EMOS predictive variance is a linear function of the ensemble variance. For fitting the EMOS coefficients, the method of minimum continuous ranked probability score (CRPS) estimation is introduced. This technique finds the coefficient values that optimize the CRPS for the training data. The EMOS technique was applied to 48-h forecasts of sea level pressure and surface temperature over the North American Pacific Northwest in spring 2000, using the University of Washington mesoscale ensemble. When compared to the bias-corrected ensemble, deterministic-style EMOS forecasts of sea level pressure had root-mean-square error 9% less and mean absolute error 7% less. The EMOS predictive PDFs were sharp, and much better calibrated than the raw ensemble or the bias-corrected ensemble.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 779 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3