A Simple Method Based on Routine Observations to Nowcast Down-Valley Flows in Shallow, Narrow Valleys

Author:

Duine Gert-Jan1,Hedde Thierry2,Roubin Pierre2,Durand Pierre3

Affiliation:

1. Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, and Laboratoire de Modélisation des Transferts dans l’Environnement, CEA Cadarache, Saint-Paul-lès-Durance, France

2. Laboratoire de Modélisation des Transferts dans l’Environnement, CEA Cadarache, Saint-Paul-lès-Durance, France

3. Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, Toulouse, France

Abstract

AbstractA simple relation to diagnose the existence of a thermally driven down-valley wind in a shallow (100 m deep) and narrow (1–2 km wide) valley based on routine weather measurements has been determined. The relation is based on a method that has been derived from a forecast verification principle. It consists of optimizing a threshold of permanently measured quantities to nowcast the thermally driven Cadarache (southeastern France) down-valley wind. Three parameters permanently observed at a 110-m-high tower have been examined: the potential temperature difference between the heights of 110 and 2 m, the wind speed at 110 m, and a bulk Richardson number. The thresholds are optimized using the wind observations obtained within the valley during the Katabatic Winds and Stability over Cadarache for the Dispersion of Effluents (KASCADE) field experiment, which was conducted in the winter of 2013. The highest predictability of the down-valley wind at the height of 10 m (correct nowcasting ratio of 0.90) was found for the potential temperature difference at a threshold value of 2.6 K. The applicability of the method to other heights of the down-valley wind (2 and 30 m) and to summer conditions is also demonstrated. This allowed a reconstruction of the climatology of the thermally driven down-valley wind that demonstrates that the wind exists throughout the year and is strongly linked to nighttime duration. This threshold technique will make it possible to forecast the subgrid-scale down-valley wind from operational numerical weather coarse-grid simulations by means of statistical downscaling.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3