Fine-Resolution WRF Simulation of Stably Stratified Flows in Shallow Pre-Alpine Valleys: A Case Study of the KASCADE-2017 Campaign

Author:

de Bode MichielORCID,Hedde ThierryORCID,Roubin Pierre,Durand Pierre

Abstract

In an overall approach aiming at the development and qualification of various tools designed to diagnose and/or forecast the flows at the local scale in complex terrain, we qualified a numerical model based on the WRF platform and operated in a two-way nested domain mode, down to a horizontal resolution of 111 m for the smallest domain. The area in question is the Cadarache valley (CV), in southeast France, which is surrounded by hills and valleys of various sizes. The CV dimensions (1 km wide and 100 m deep) favor the development of local flows greatly influenced by the diurnal cycle and are prone to thermal stratification, especially during stable conditions. This cycle was well documented due to permanent observations and dedicated field campaigns. These observations were used to evaluate the performance of the model on a specific day among the intensive observation periods carried out during the KASCADE-2017 campaign. The model reproduced the wind flow and its diurnal cycle well, notably at the local CV scale, which constitutes considerable progress with respect to the performances of previous WRF simulations conducted in this area with kilometric resolution, be it operational weather forecasts or dedicated studies conducted on specific days. The diurnal temperature range is underestimated however, together with the stratification intensity of the cold pool observed at night. Consequently, the slope drainage flows along the CV sidewalls are higher in the simulation than in the observations, and the resulting scalar fields (such as specific humidity) are less heterogeneous in the model than in the observations.

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3