Detection and Inventory of Intense Pyroconvection in Western North America using GOES-15 Daytime Infrared Data

Author:

Peterson David A.1,Fromm Michael D.2,Solbrig Jeremy E.3,Hyer Edward J.1,Surratt Melinda L.1,Campbell James R.1

Affiliation:

1. Naval Research Laboratory, Monterey, California

2. Naval Research Laboratory, Washington, D.C.

3. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Abstract

AbstractIntense wildfires occasionally generate fire-triggered storms, known as pyrocumulonimbus (pyroCb), that can inject smoke particles and trace gases into the upper troposphere and lower stratosphere (UTLS). This study develops the first pyroCb detection algorithm using three infrared (IR) channels from the imager on board GOES-West (GOES-15). The algorithm first identifies deep convection near active fires via the longwave IR brightness temperature, distinguishing between midtropospheric and UTLS injections. During daytime, unique pyroCb microphysical properties are characterized by a medium-wave brightness temperature that is significantly larger than that in the longwave, allowing for separation of pyroCb from other deep convection. A cloud-opacity test reduces potential false detections. Application of this algorithm to 88 intense wildfires observed during the 2013 fire season in western North America resulted in successful detection of individual intense events, pyroCb embedded within traditional convection, and multiple, short-lived pulses of pyroconvective activity. Comparisons with a community inventory indicate that this algorithm captures the majority of pyroCb. The primary limitation is that pyroCb anvils can be small relative to GOES-West pixel size, especially in regions with large viewing angles. The algorithm is also sensitive to some false positives from traditional convection that either ingests smoke or exhibits extreme updraft velocities. A total of 26 pyroCb events are inventoried, including 31 individual pulses, all of which can inject smoke into the UTLS. Six of the inventoried intense pyroCb were not previously documented. Near-real-time application of this algorithm can be extended to other regions and to next-generation geostationary sensors, which offer significant advantages for pyroCb and fire detection.

Funder

National Aeronautics and Space Administration

U.S. Naval Research Laboratory

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3