Informed Multi‐Scale Approach Applied to the British Columbia Fires of Late Summer 2017

Author:

Reisner Jon M.1ORCID,Josephson Alexander J.2ORCID,Gorkowski Kyle J.2ORCID,Koo Eunmo1ORCID,Thompson Daniel K.3,Schroeder Dave4,Dubey Manvendra K.2ORCID

Affiliation:

1. X Computational Physics Division Los Alamos National Laboratory Los Alamos NM USA

2. Earth and Environmental Sciences Division Los Alamos National Laboratory Los Alamos NM USA

3. Canadian Forest Service Natural Resources Canada Edmonton AB Canada

4. Agriculture and Forestry Government of Alberta Edmonton AB Canada

Abstract

AbstractPyrocumulonimbus (PyroCb) clouds have a complex origin dependent on fire dynamics and meteorological conditions. When a pyrocumulonimbus cloud develops and is maintained over a period of time, it can inject significant aerosol into the troposphere and lower stratosphere, resulting in a longer‐term (months to years) occurrence of aerosol in the stratosphere. In this work, we investigate the British Columbia wildfires on 12–13 August 2017 using a multi‐scale simulation framework. We use the output of a physics‐based wildfire model (FIRETEC) with parameterized energy, particle, and gas emissions to drive the upper atmospheric aerosol mass injection within a regional cloud resolving model (HIGRAD). We demonstrate that vertical motions produced by latent heat release of the condensation of ice and cloud particles within the PyroCbs induce another 5 km of lifting of the simulated aerosol plume. Primary black carbon and organic aerosols (OAs) alone may not be enough to explain the observed aerosol burden, thus we show that secondary OA produced via condensation of gases by the fires, ash, and possibly dust can enhance lofted aerosol mass. A simulation with all emission mechanisms active, driven by the observed fuel load and environmental conditions, reasonably reproduces an aerosol profile inferred from observational data.

Funder

Los Alamos National Laboratory

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3