Evaluation of Wind Forecasts and Observation Impacts from Variational and Ensemble Data Assimilation for Wind Energy Applications

Author:

Ancell Brian C.1,Kashawlic Erin1,Schroeder John L.1

Affiliation:

1. Texas Tech University, Lubbock, Texas

Abstract

Abstract The U.S. Department of Energy Wind Forecast Improvement Project (WFIP) has recently been completed with the aim of 1) understanding the performance of different mesoscale data assimilation systems for lower-atmospheric wind prediction and 2) determining the observation impacts on wind forecasts within the different assimilation systems. Here an ensemble Kalman filter (EnKF) was tested against a three-dimensional variational data assimilation (3DVAR) technique. Forecasts lasting 24 hours were produced for a month-long period to determine the day-to-day performance of each system, as well as over 10 individual wind ramp cases. The observation impacts from surface mesonet and profiler/sodar wind observations aloft were also tested in each system for both the month-long run and the ramp forecasts. It was found that EnKF forecasts verified over a domain including Texas and Oklahoma were better than those of 3DVAR for the month-long experiment throughout the forecast window, presumably from the use of flow-dependent covariances in the EnKF. The assimilation of mesonet data improved both EnKF and 3DVAR early forecasts, but sodar/profiler data showed a degradation (EnKF) or had no effect (3DVAR), with the degradation apparently resulting from a lower-atmospheric wind bias. For the wind ramp forecasts, ensemble averaging appears to overwhelm any improvements flow-dependent assimilation may have on ramp forecasts, leading to better 3DVAR ramp prediction. This suggests that best member techniques within the EnKF may be necessary for improved performance over 3DVAR for forecasts of sharp features such as wind ramps. Observation impacts from mesonet and profiler/sodar observations generally improved EnKF ramp forecasts, but either had little effect on or degraded 3DVAR forecasts.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3