Comparing Adjoint- and Ensemble-Sensitivity Analysis with Applications to Observation Targeting

Author:

Ancell Brian1,Hakim Gregory J.1

Affiliation:

1. University of Washington, Seattle, Washington

Abstract

Abstract The sensitivity of numerical weather forecasts to small changes in initial conditions is estimated using ensemble samples of analysis and forecast errors. Ensemble sensitivity is defined here by linear regression of analysis errors onto a given forecast metric. It is shown that ensemble sensitivity is proportional to the projection of the analysis-error covariance onto the adjoint-sensitivity field. Furthermore, the ensemble-sensitivity approach proposed here involves a small calculation that is easy to implement. Ensemble- and adjoint-based sensitivity fields are compared for a representative wintertime flow pattern near the west coast of North America for a 90-member ensemble of independent initial conditions derived from an ensemble Kalman filter. The forecast metric is taken for simplicity to be the 24-h forecast of sea level pressure at a single point in western Washington State. Results show that adjoint and ensemble sensitivities are very different in terms of location, scale, and magnitude. Adjoint-sensitivity fields reveal mesoscale lower-tropospheric structures that tilt strongly upshear, whereas ensemble-sensitivity fields emphasize synoptic-scale features that tilt modestly throughout the troposphere and are associated with significant weather features at the initial time. Optimal locations for targeting can easily be determined from ensemble sensitivity, and results indicate that the primary targeting locations are located away from regions of greatest adjoint and ensemble sensitivity. It is shown that this method of targeting is similar to previous ensemble-based methods that estimate forecast-error variance reduction, but easily allows for the application of statistical confidence measures to deal with sampling error.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3