Affiliation:
1. Meteorological Research Institute Japan Meteorological Agency Tsukuba Japan
2. Atmosphere and Ocean Research Institute The University of Tokyo Kashiwa Japan
3. Japan Agency for Marine‐Earth Science and Technology Yokohama Japan
Abstract
AbstractLa Niña persisted from 2020 to 2023, but its mechanisms are still unclear. In this study, atmosphere and ocean reanalysis and 100‐member initialized forecasts using a state‐of‐the‐art climate model were analyzed to identify factors contributing to the persistence of the first‐ to second‐year La Niña during 2020–2022. We found that North Pacific high pressure anomalies in the winter of 2020/2021 forced a negative phase of the Pacific meridional mode through the following spring, forming the broader structure of La Niña. The resultant broader La Niña pattern slowed down the recharge‐discharge process by Ekman transport, persisting La Niña. Ensemble forecast sensitivity analysis revealed that the meridional extent of La Niña explains its forecast spread, reaffirming the importance of La Niña spatial pattern. Advancing predictive understanding of 2020–2022 multi‐year La Niña can help to improve the extended seasonal forecast.
Funder
Japan Society for the Promotion of Science
Publisher
American Geophysical Union (AGU)
Subject
General Earth and Planetary Sciences,Geophysics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献