Nonlinear Characteristics of Ensemble Perturbation Evolution and Their Application to Forecasting High-Impact Events

Author:

Ancell Brian C.1

Affiliation:

1. Texas Tech University, Lubbock, Texas

Abstract

Abstract Ensemble forecasting is becoming an increasingly important aspect of numerical weather prediction. As ensemble perturbation evolution becomes more nonlinear as a forecast evolves, the ensemble mean can diverge from the model attractor on which ensemble members are constrained. In turn, the ensemble mean can become increasingly unrealistic, and although statistically best on average, it can provide poor forecast guidance for specific high-impact events. This study uses an ensemble Kalman filter to investigate this behavior at the synoptic scale for landfalling midlatitude cyclones. This work also aims to understand the best way to select “best members” closest to the mean that both behave realistically and possess the statistically beneficial qualities of the mean. It is found that substantial nonlinearity emerges within forecast times of a day, which roughly agrees with previous research addressing synoptic-scale nonlinearity more generally. The evolving nonlinearity results in unrealistic behavior of the ensemble mean that significantly underestimates precipitation and wind speeds associated with the cyclones. Choosing a single ensemble member closest to the ensemble mean over the entire forecast window provides forecasts that are unable to produce the relatively small errors of the ensemble mean. However, since different ensemble members are closest to the ensemble mean at different forecast times, the best forecast is composed of different ensemble members throughout the forecast window. The benefits and limitations of applying this methodology to improve forecasts of synoptic-scale high-impact weather events are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3