Short-Term Convection-Allowing Ensemble Precipitation Forecast Sensitivity to Resolution of Initial Condition Perturbations and Central Initial States

Author:

Schwartz Craig S.12,Poterjoy Jonathan23,Romine Glen S.1,Dowell David C.4,Carley Jacob R.5,Bresch Jamie1

Affiliation:

1. a National Center for Atmospheric Research, Boulder, Colorado

2. b University of Maryland, College Park, College Park, Maryland

3. c NOAA/Atlantic Oceanographic and Meteorological Laboratory, Miami, Florida

4. d NOAA/Earth System Research Laboratory, Boulder, Colorado

5. e NOAA/NWS/NCEP/Environmental Modeling Center, College Park, Maryland

Abstract

Abstract Nine sets of 36-h, 10-member, convection-allowing ensemble (CAE) forecasts with 3-km horizontal grid spacing were produced over the conterminous United States for a 4-week period. These CAEs had identical configurations except for their initial conditions (ICs), which were constructed to isolate CAE forecast sensitivity to resolution of IC perturbations and central initial states about which IC perturbations were centered. The IC perturbations and central initial states were provided by limited-area ensemble Kalman filter (EnKF) analyses with both 15- and 3-km horizontal grid spacings, as well as from NCEP’s Global Forecast System (GFS) and Global Ensemble Forecast System. Given fixed-resolution IC perturbations, reducing horizontal grid spacing of central initial states improved ∼1–12-h precipitation forecasts. Conversely, for constant-resolution central initial states, reducing horizontal grid spacing of IC perturbations led to comparatively smaller short-term forecast improvements or none at all. Overall, all CAEs initially centered on 3-km EnKF mean analyses produced objectively better ∼1–12-h precipitation forecasts than CAEs initially centered on GFS or 15-km EnKF mean analyses regardless of IC perturbation resolution, strongly suggesting it is more important for central initial states to possess fine-scale structures than IC perturbations for short-term CAE forecasting applications, although fine-scale perturbations could potentially be critical for data assimilation purposes. These findings have important implications for future operational CAE forecast systems and suggest CAE IC development efforts focus on producing the best possible high-resolution deterministic analyses that can serve as central initial states for CAEs. Significance Statement Ensembles of weather model forecasts are composed of different “members” that, when combined, can produce probabilities that specific weather events will occur. Ensemble forecasts begin from specified atmospheric states, called initial conditions. For ensembles where initial conditions differ across members, the initial conditions can be viewed as a set of small perturbations added to a central state provided by a single model field. Our study suggests it is more important to increase horizontal resolution of the central state than resolution of the perturbations when initializing ensemble forecasts with 3-km horizontal grid spacing. These findings suggest a potential for computational savings and a streamlined process for improving high-resolution ensemble initial conditions.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3