Revisiting the Global Seasonal Snow Classification: An Updated Dataset for Earth System Applications

Author:

Sturm Matthew1,Liston Glen E.2

Affiliation:

1. Geophysical Institute, University of Alaska, Fairbanks, Alaska

2. Cooperative Institute for Research in the Atmosphere, Colorado State University, Fort Collins, Colorado

Abstract

AbstractTwenty-five years ago, we published a global seasonal snow classification now widely used in snow research, physical geography, and as a mission planning tool for remote sensing snow studies. Performing the classification requires global datasets of air temperature, precipitation, and land-cover. When introduced in 1995, the finest resolution global datasets of these variables were on a 0.5° × 0.5° latitude-longitude grid (approximately 50 km). Here we revisit the snow classification system and, using new datasets and methods, present a revised classification on a 10-arcsecond × 10-arcsecond latitude-longitude grid (approximately 300 m). We downscaled 0.1° × 0.1° latitude-longitude (approximately 10 km) gridded meteorological climatologies (1981-2019, European Centre for Medium-Range Weather Forecasts [ECMWF] ReAnalysis, 5th Generation Land [ERA5-Land]) using MicroMet, a spatially distributed, high-resolution, micro-meteorological model. The resulting air temperature and precipitation datasets were combined with European Space Agency (ESA) Climate Change Initiative (CCI) GlobCover land-cover data (as a surrogate for wind speed) to produce the updated classification, which we have applied to all of Earth’s terrestrial areas. We describe this new, high-resolution snow classification dataset, highlight the improvements added to the classification system since its inception, and discuss the utility of the climatological snow classes at this much higher resolution. The snow class dataset (Global Seasonal-Snow Classification 2.0) and the tools used to develop the data are publicly available online at the National Snow and Ice Data Center (NSIDC).

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference172 articles.

1. Effects of vegetation on snow accumulation and ablation in a mid-latitude sub-alpine forest;Musselman;Hydrol. Processes,2008

2. andS Problems in mapping snow cover Army Research Rep;Espenshade,1956

3. andR management practices for increasing soil water reserves in frozen prairie soils Watershed Management in the Eighties Civil Engineers;Gray;Soc,1985

4. andR An Interdisciplinary Examination of Covered University;Jones;Ecology Ecosystems,2001

5. Structure and wind transport of seasonal snow on the Arctic slope of Alaska;Benson;Ann. Glaciol.,1993

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3