Tower-based C-band radar measurements of an alpine snowpack
-
Published:2024-07-05
Issue:7
Volume:18
Page:3177-3193
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Brangers IsisORCID, Marshall Hans-Peter, De Lannoy Gabrielle, Dunmire DevonORCID, Mätzler Christian, Lievens HansORCID
Abstract
Abstract. To better understand the interactions between C-band radar waves and snow, a tower-based experiment was set up in the Idaho Rocky Mountains for the period of 2021–2023. The experiment objective was to improve understanding of the sensitivity of Sentinel-1 C-band backscatter radar signals to snow. The data were collected in the time domain to measure the backscatter profile from the various snowpack and ground surface layers. The data show that scattering is present throughout the snow volume, although it is limited for low snow densities. Contrasting layer interfaces, ice features and metamorphic snow can have considerable impact on the backscatter signal. During snowmelt periods, wet snow absorbs the signal, and the soil backscatter becomes negligible. A comparison of the vertically integrated tower radar data with Sentinel-1 data shows that both systems have similar temporal behavior, and both feature an increase in backscatter during the dry-snow period in 2021–2022, even during weeks of nearly constant snow depth, likely due to morphological changes in the snowpack. The results demonstrate that C-band radar is sensitive to the dominant seasonal patterns in snow accumulation but that changes in microstructure, stratigraphy, melt–freeze cycles and snow wetness may complicate satellite-based snow depth retrievals.
Funder
Fonds Wetenschappelijk Onderzoek National Aeronautics and Space Administration Belgian Federal Science Policy Office KU Leuven Cold Regions Research and Engineering Laboratory
Publisher
Copernicus GmbH
Reference52 articles.
1. Alfieri, L., Avanzi, F., Delogu, F., Gabellani, S., Bruno, G., Campo, L., Libertino, A., Massari, C., Tarpanelli, A., Rains, D., Miralles, D. G., Quast, R., Vreugdenhil, M., Wu, H., and Brocca, L.: High-resolution satellite products improve hydrological modeling in northern Italy, Hydrol. Earth Syst. Sci., 26, 3921–3939, https://doi.org/10.5194/hess-26-3921-2022, 2022. a 2. Barnett, T. P., Adam, J. C., and Lettenmaier, D. P.: Potential impacts of a warming climate on water availability in snow-dominated regions, Nature, 438, 303–309, https://doi.org/10.1038/nature04141, 2005. a 3. Battaglia, A., Tanelli, S., Kobayashi, S., Zrnic, D., Hogan, R. J., and Simmer, C.: Multiple-scattering in radar systems: A review, J. Quant. Spectrosc. Ra., 111, 917–947, https://doi.org/10.1016/j.jqsrt.2009.11.024, 2010. a 4. Brangers, I., Lievens, H., Getirana, A., and De Lannoy, G.: Sentinel-1 snow depth assimilation to improve river discharge estimates in the western European Alps, ESS Open Archive, https://doi.org/10.22541/essoar.167690018.86153188/v1, 2023. a 5. Brangers, I., Marshall, H. P., De Lannoy, G. J. M., Dunmire, D., Mätzler, C., and Lievens, H.: Tower-based C-band radar measurements of an alpine snowpack, Zenodo [data set and code], https://doi.org/10.5281/zenodo.10897448, 2024. a
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|