Anticipating how rain-on-snow events will change through the 21st century: lessons from the 1997 new year’s flood event

Author:

Rhoades Alan M.ORCID,Zarzycki Colin M.,Hatchett Benjamin J.,Inda-Diaz Héctor,Rudisill William,Bass Benjamin,Dennis Eli,Heggli Anne,McCrary Rachel,McGinnis Seth,Ombadi Mohammed,Rahimi-Esfarjani Stefan,Slinskey Emily,Srivastava Abhishekh,Szinai Julia,Ullrich Paul A.,Wehner Michael,Yates David,Jones Andrew D.

Abstract

AbstractThe California-Nevada 1997 New Year’s flood was an atmospheric river (AR)-driven rain-on-snow (RoS) event and remains the costliest in their history. The joint occurrence of saturated soils, rainfall, and snowmelt generated inundation throughout northern California-Nevada. Although AR RoS events are projected to occur more frequently with climate change, the warming sensitivity of their flood drivers across scales remains understudied. We leverage the regionally refined mesh capabilities of the Energy Exascale Earth System Model (RRM-E3SM) to recreate the 1997 New Year’s flood with horizontal grid spacings of 3.5 km across California, with forecast lead times of up to 4 days, and across six warming levels ranging from pre-industrial conditions to $$+3.5\,^\circ$$ + 3.5 C. We describe the sensitivity of the flood drivers to warming including AR duration and intensity, precipitation phase, intensity and efficiency, snowpack mass and energy changes, and runoff efficiency. Our findings indicate current levels of climate change negligibly influence the flood drivers. At warming levels $$\ge 1.7\,^\circ$$ 1.7 C, AR hazard potential increases, snowpack nonlinearly decreases, antecedent soil moisture decreases (except where the snowline retreats), and runoff decreases (except in the southern Sierra Nevada where antecedent snowpack persists). Storm total precipitation increases, but at rates below warming-induced increases in saturation-specific humidity. Warming intensifies short-duration, high-intensity rainfall, particularly where snowfall-to-rainfall transitions occur. This study highlights the nonlinear tradeoffs in 21st-century RoS flood hazards with warming and provides water management and infrastructure investment adaptation considerations.

Funder

Biological and Environmental Research

Nevada Department of Transportation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3