The Vice and Virtue of Increased Horizontal Resolution in Ensemble Forecasts of Tornadic Thunderstorms in Low-CAPE, High-Shear Environments

Author:

Lawson John R.12,Potvin Corey K.12,Skinner Patrick S.12,Reinhart Anthony E.12

Affiliation:

1. a Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

2. b NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

Abstract

AbstractTornadoes have Lorenzian predictability horizons O(10) min, and convection-allowing ensemble prediction systems (EPSs) often provide probabilistic guidance of such events to forecasters. Given the O(0.1)-km length scale of tornadoes and O(1)-km scale of mesocyclones, operational models running at horizontal grid spacings (Δx) of 3 km may not capture narrower mesocyclones (typical of the southeastern United States) and certainly do not resolve most tornadoes per se. In any case, it requires O(50) times more computer power to reduce Δx by a factor of 3. Herein, to determine value in such an investment, we compare two EPSs, differing only in Δx (3 vs 1 km), for four low-CAPE, high-shear cases. Verification was grouped as 1) deterministic, traditional methods using pointwise evaluation, 2) a scale-aware probabilistic metric, and 3) a novel method via object identification and information theory. Results suggest 1-km forecasts better detect storms and any associated rapid low- and midlevel rotation, but at the cost of weak–moderate reflectivity forecast skill. The nature of improvement was sensitive to the case, variable, forecast lead time, and magnitude, precluding a straightforward aggregation of results. However, the distribution of object-specific information gain over all cases consistently shows greater average benefit from the 1-km EPS. We also reiterate the importance of verification methodology appropriate for the hazard of interest.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3