Results from a Pseudo-Real-Time Next-Generation 1-km Warn-on-Forecast System Prototype

Author:

Kerr Christopher A.12ORCID,Matilla Brian C.12,Wang Yaping12,Stratman Derek R.12,Jones Thomas A.123,Yussouf Nusrat123

Affiliation:

1. a Cooperative Institute for Severe and High-Impact Weather Research and Operations, University of Oklahoma, Norman, Oklahoma

2. b NOAA/OAR National Severe Storms Laboratory, Norman, Oklahoma

3. c School of Meteorology, University of Oklahoma, Norman, Oklahoma

Abstract

Abstract Since 2017, the Warn-on-Forecast System (WoFS) has been tested and evaluated during the Hazardous Weather Testbed Spring Forecasting Experiment (SFE) and summer convective seasons. The system has shown promise in predicting high temporal and spatial specificity of individual evolving thunderstorms. However, this baseline version of the WoFS has a 3-km horizontal grid spacing and cannot resolve some convective processes. Efforts are under way to develop a WoFS prototype at a 1-km grid spacing (WoFS-1km) with the hope to improve forecast accuracy. This requires extensive changes to data assimilation specifications and observation processing parameters. A preliminary version of WoFS-1km nested within WoFS at 3 km (WoFS-3km) was developed, tested, and run during the 2021 SFE in pseudo–real time. Ten case studies were successfully completed and provided simulations of a variety of convective modes. The reflectivity and rotation storm objects from WoFS-1km are verified against both WoFS-3km and 1-km forecasts initialized from downscaled WoFS-3km analyses using both neighborhood- and object-based techniques. Neighborhood-based verification suggests WoFS-1km improves reflectivity bias but not spatial placement. The WoFS-1km object-based reflectivity forecast accuracy is higher in most cases, leading to a net improvement. Both the WoFS-1km and downscaled forecasts have ideal reflectivity object frequency biases while the WoFS-3km overpredicts the number of reflectivity objects. The rotation object verification is ambiguous as many cases are negatively impacted by 1-km data assimilation. This initial evaluation of a WoFS-1km prototype is a solid foundation for further development and future testing. Significance Statement This study investigates the impacts of performing data assimilation directly on a 1-km WoFS model grid. Most previous studies have only initialized 1-km WoFS forecasts from coarser analyses. The results demonstrate some improvements to reflectivity forecasts through data assimilation on a 1-km model grid although finer resolution data assimilation did not improve rotation forecasts.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference60 articles.

1. The sensitivity of numerically simulated cyclic mesocyclogenesis to variations in model physical and computational parameters;Adlerman, E. J.,2002

2. Scalable implementations of ensemble filter algorithms for data assimilation;Anderson, J. L.,2007

3. Model uncertainty in a mesoscale ensemble prediction system: Stochastic versus multiphysics representations;Berner, J.,2011

4. Stochastic parameterization: Toward a new view of weather and climate models;Berner, J.,2017

5. Effects of horizontal grid spacing and inflow environment on forecasts of cyclic mesocyclogenesis in NSSL’s Warn-on-Forecast System (WoFS);Britt, K. C.,2020

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3