Dynamic and Double-Diffusive Instabilities in a Weak Pycnocline. Part I: Observations of Heat Flux and Diffusivity in the Vicinity of Maud Rise, Weddell Sea

Author:

Shaw William J.1,Stanton Timothy P.1

Affiliation:

1. Department of Oceanography, Naval Postgraduate School, Monterey, California

Abstract

Abstract An expedition to study the stability of the weakly stratified water column in the eastern Weddell Sea was undertaken in the austral winter of 2005. A regional CTD survey around Maud Rise delineated water mass boundaries associated with flow around the seamount and identified areas most susceptible to overturning. A downstream region of the seamount Taylor column was found least stable, with a potential density difference across the pycnocline less than 0.018 kg m−3. Intensive water column measurements, including 1300 profiles of temperature, conductivity, and fast-response microconductivity, were made during a series of 13 drift stations to investigate vertical turbulent transports and the evolution of water column stability. The dependence of pycnocline turbulent diffusivity kT on Froude number Fr (turbulence generated by internal wave shear) and density ratio Rρ (turbulence generated by diffusive layering and possibly diapycnal cabbeling) is investigated. The Fr alone cannot explain completely the observed kT variability. Instead, there is also a strong dependence on Rρ. Turbulent diffusivity is an order of magnitude larger in the weakly stratified Taylor cap over Maud Rise (where Rρ approaches one) than in the surrounding water column that is unaffected by flow around Maud Rise. In terms of water column stability, diffusive heat flux across the pycnocline inhibits winter ice growth and densification of the surface layer. The observed Rρ dependence of kT thus provides a strong negative feedback on the winter evolution of the Maud Rise area water column toward overturning instability.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3