Vertical Convergence of Turbulent and Double-Diffusive Heat Flux Drives Warming and Erosion of Antarctic Winter Water in Summer

Author:

Giddy I. S.123ORCID,Fer I.45ORCID,Swart S.12ORCID,Nicholson S.-A.3ORCID

Affiliation:

1. a Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden

2. b Department of Oceanography, University of Cape Town, Cape Town, South Africa

3. c Southern Ocean Carbon-Climate Observatory, CSIR, Cape Town, South Africa

4. d Geophysical Institute, University of Bergen, Bergen, Norway

5. e Bjerknes Center for Climate Research, Bergen, Norway

Abstract

Abstract The seasonal warming of Antarctic Winter Water (WW) is a key process that occurs along the path of deep water transformation to intermediate waters. These intermediate waters then enter the upper branch of the circumpolar overturning circulation. Despite its importance, the driving mechanisms that mediate the warming of Antarctic WW remain unknown, and their quantitative evaluation is lacking. Using 38 days of glider measurements of microstructure shear, we characterize the rate of turbulent dissipation and its drivers over a summer season in the northern Weddell Sea. Observed dissipation rates in the surface layer are mainly forced by winds and explained by the stress scaling (r2 = 0.84). However, mixing to the base of the mixed layer during strong wind events is suppressed by vertical stratification from sea ice melt. Between the WW layer and the warm and saline circumpolar deep water, a subsurface layer of enhanced dissipation is maintained by double-diffusive convection (DDC). We develop a WW layer temperature budget and show that a warming trend (0.2°C over 28 days) is driven by a convergence of heat flux through mechanically driven mixing at the base of the mixed layer and DDC at the base of the WW layer. Notably, excluding the contribution from DDC results in an underestimation of WW warming by 23%, highlighting the importance of adequately representing DDC in ocean models. These results further suggest that an increase in storm intensity and frequency during summer could increase the rate of warming of WW with implications for rates of upper-ocean water mass transformation. Significance Statement Around Antarctica, the summer warming of the subsurface cold Antarctic Winter Water feeds the upper layer of the overturning circulation. This study aims to quantify the mechanisms that mediate the warming of Antarctic Winter Water. Our results reveal that the observed warming of this layer can be explained by both surface wind-driven mixing processes as well as double-diffusive convection occurring beneath the Winter Water layer. Understanding the role of these mechanisms is important for understanding the regions upper-ocean heat distribution, the rates of water mass transformation and how they might respond to changes in sea ice, stratification, and the overlying large-scale winds.

Publisher

American Meteorological Society

Subject

Oceanography

Reference71 articles.

1. Water-mass transformation by sea ice in the upper branch of the Southern Ocean overturning;Abernathey, R. P.,2016

2. Fronts, water masses and heat content variability in the western Indian sector of the Southern Ocean during austral summer 2004;Anilkumar, N.,2006

3. Southern Ocean warming delayed by circumpolar upwelling and equatorward transport;Armour, K. C.,2016

4. Southern Ocean in-situ temperature trends over 25 years emerge from interannual variability;Auger, M.,2021

5. An examination of double-diffusive processes in a mesoscale eddy in the Arctic Ocean;Bebieva, Y.,2016

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3