Quantification of the Uncertainties in Soil and Vegetation Parameterizations for Regional Climate Simulations in Europe

Author:

Breil Marcus1,Schädler Gerd1

Affiliation:

1. Institute of Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

Abstract The deterministic description of the subgrid-scale land–atmosphere interaction in regional climate model (RCM) simulations is changed by using stochastic soil and vegetation parameterizations. For this, the land–atmosphere interaction parameterized in a land surface model (LSM) is perturbed stochastically by adding a random value to the input parameters using a random number generator. In this way, a stochastic ensemble is created that represents the impact of the uncertainties in these subgrid-scale processes on the resolved scale circulation. In a first step, stochastic stand-alone simulations with the VEG3D LSM are performed to identify sensitive model parameters. Afterward, VEG3D is coupled to the Consortium for Small-Scale Modeling–Climate Limited-Area Modeling (COSMO-CLM) RCM and stochastically perturbed simulations driven by ERA-Interim (2001–10) are performed for the Coordinated Downscaling Experiment–European Domain (EURO-CORDEX) at a horizontal resolution of 0.22°. The simulation results reveal that the impact of stochastically varied soil and vegetation parameterizations on the simulated climate conditions differs regionally. In central Europe the impact on the mean temperature and precipitation characteristics is very weak. In southern Europe and North Africa, however, the resolved scale circulation is very sensitive to the local soil water conditions. Furthermore, it is demonstrated that the use of stochastic soil and vegetation parameterizations considerably improves the variability of monthly rainfall sums all over Europe by improving the representation of the land–atmosphere interaction in the stochastic ensemble on a daily basis. In particular, inland rainfall during summer is simulated much better.

Funder

Bundesministerium für Bildung und Forschung

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3