The reduction of systematic temperature biases in soil moisture-limited regimes by stochastic root depth variations

Author:

Breil M.1,Schädler G.1

Affiliation:

1. 1 Institute for Meteorology and Climate Research, Karlsruhe Institute of Technology, Karlsruhe, Germany

Abstract

AbstractIn soil moisture-limited evapotranspiration regimes, near-surface temperatures are strongly affected by the available soil water amount for evapotranspiration. Its spurious representation in climate models consequently results in an inaccurately simulated turbulent heat flux partitioning and associated temperature biases.Since the physical reasons for soil moisture induced temperature biases are different in every region and model, a new method is presented to reduce these biases systematically. To achieve this, a stochastic root depth variation is applied, whereby the root depths in each grid-box of the model domain are uniformly perturbed. Thus, the soil water supply for evapotranspiration is increased for 50 % of the grid-boxes in the model domain and reduced for the other 50 %. In energy-limited regimes, where soil moisture just slightly affects the near-surface temperatures, the turbulent heat flux partitioning is not affected. In moisture-limited regimes, the method has an asymmetric effect on evapotranspiration. In cases of overestimated supplies, the reduced root depths in 50 % of the model domain result in an overall evapotranspiration reduction. In cases of underestimated supplies, the opposite is the case. In cases of correctly simulated supplies, the evapotranspiration reduction in 50 % of the model domain and the evapotranspiration increase in the other 50 % balance each other on a climatological mean. In this way, the method affects the turbulent heat flux partitioning only if soil moisture is spuriously simulated in the model. The associated biases are then systematically reduced, independently of the underlying physical process, which caused the soil moisture deficiencies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3