The potential of an increased deciduous forest fraction to mitigate the effects of heat extremes in Europe

Author:

Breil Marcus,Weber Annabell,Pinto Joaquim G.ORCID

Abstract

Abstract. Deciduous forests are characterized by a higher albedo, a reduced stomatal resistance, and a deeper root system in comparison to coniferous forests. As a consequence, less solar radiation is absorbed and evapotranspiration is potentially increased, making an increase in the deciduous forest fraction a potentially promising measure to mitigate the burdens of heat extremes for humans and nature. We analyze this potential by means of an idealized 30-year-long regional climate model (RCM) experiment, in which all coniferous forests in Europe are replaced by deciduous forests and compared to a simulation using the actual forest composition. Results show that an increase in the deciduous forest fraction reduces the heat intensity during heat periods in most regions of Europe. During heat periods, there is a slight reduction in the mean daily maximum 2 m temperatures simulated of about 0.2 K locally and 0.1 K non-locally. Regions with a high cooling potential are southwestern France and northern Turkey, where heat period intensities are reduced by up to 1 K. Warming effects are simulated in Scandinavia and eastern Europe. Although the cooling effect on heat period intensities is statistically significant over large parts of Europe, the magnitude of the temperature reduction is small. Consequently, an increase in the deciduous forest fraction only has a limited potential to reduce heat period intensities in Europe and can therefore only be considered as a supporting mitigation measure to complement more effective mitigation strategies.

Funder

AXA Research Fund

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Reference65 articles.

1. Anderson, R. G., Canadell, J. G., Randerson, J. T., Jackson, R. B., Hungate, B. A., Baldocchi, D. D., Ban-Weiss, G. A., Bonan, G. B., Caldeira, K., Cao, L., Diffenbaugh, N. S., Gurney, K. R., Kueppers, L. M., Law, B. E., Luyssaert, S., and O'Halloran, T. L.: Biophysical considerations in forestry for climate protection, Front. Ecol. Environ., 9, 174–182, https://doi.org/10.1890/090179, 2011.

2. Augusto, L., De Schrijver, A., Vesterdal, L., Smolander, A., Prescott, C., and Ranger, J.: Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests, Biol. Rev., 90, 444–466, https://doi.org/10.1111/brv.12119, 2015.

3. Baldocchi, D., Kelliher, F. M., Black, T. A., and Jarvis, P.: Climate and vegetation controls on boreal zone energy exchange, Glob. Change Biol., 6, 69–83, https://doi.org/10.1046/j.1365-2486.2000.06014.x, 2000.

4. Bartholome, E. and Belward, A. S.: GLC2000: a new approach to global land cover mapping from Earth observation data, Int. J. Remote Sens., 26, 1959–1977, https://doi.org/10.1080/01431160412331291297, 2005.

5. Baumgarten, M., Hesse, B. D., Augustaitienė, I., Marozas, V., Mozgeris, G., Byčenkienė, S., Mordas, G., Pivoras, A., Pivoras, G., Juonyte, D., Ulevicius V., Augustaitis, A., and Matyssek, R.: Responses of species-specific sap flux, transpiration and water use efficiency of pine, spruce and birch trees to temporarily moderate dry periods in mixed forests at a dry and wet forest site in the hemi-boreal zone, J. Agr. Meteorol., 75, 13–29, https://doi.org/10.2480/agrmet.D-18-00008, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3