What determines the sign of the evapotranspiration response to afforestation in European summer?

Author:

Breil Marcus,Davin Edouard L.ORCID,Rechid Diana

Abstract

Abstract. Uncertainties in the evapotranspiration response to afforestation constitute a major source of disagreement between model-based studies of the potential climate benefits of forests. Forests typically have higher evapotranspiration rates than grasslands in the tropics, but whether this is also the case in the midlatitudes is still debated. To explore this question and the underlying physical processes behind these varying evapotranspiration rates of forests and grasslands in more detail, a regional model study with idealized afforestation scenarios was performed for Europe. In the first experiment, Europe was maximally forested, and in the second one, all forests were turned into grassland. The results of this modeling study exhibit the same contradicting evapotranspiration characteristics of forests and grasslands as documented in observational studies, but by means of an additional sensitivity simulation in which the surface roughness of the forest was reduced to grassland, the mechanisms behind these varying evapotranspiration rates could be revealed. Due to the higher surface roughness of a forest, solar radiation is more efficiently transformed into turbulent sensible heat fluxes, leading to lower surface temperatures (top of vegetation) than in grassland. The saturation deficit between the vegetation and the atmosphere, which depends on the surface temperature, is consequently reduced over forests. This reduced saturation deficit counteracts the transpiration-facilitating characteristics of a forest (deeper roots, a higher leaf area index, LAI, and lower albedo values than grassland). If the impact of the reduced saturation deficit exceeds the effects of the transpiration-facilitating characteristics of a forest, evapotranspiration is reduced compared to grassland. If not, evapotranspiration rates of forests are higher. The interplay of these two counteracting factors depends on the latitude and the prevailing forest type in a region.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3