Scale-Selective Precision for Weather and Climate Forecasting

Author:

Chantry Matthew1ORCID,Thornes Tobias1,Palmer Tim1,Düben Peter2

Affiliation:

1. Atmospheric, Oceanic and Planetary Physics, University of Oxford, Oxford, United Kingdom

2. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Abstract

Abstract Attempts to include the vast range of length scales and physical processes at play in Earth’s atmosphere push weather and climate forecasters to build and more efficiently utilize some of the most powerful computers in the world. One possible avenue for increased efficiency is in using less precise numerical representations of numbers. If computing resources saved can be reinvested in other ways (e.g., increased resolution or ensemble size) a reduction in precision can lead to an increase in forecast accuracy. Here we examine reduced numerical precision in the context of ECMWF’s Open Integrated Forecast System (OpenIFS) model. We posit that less numerical precision is required when solving the dynamical equations for shorter length scales while retaining accuracy of the simulation. Transformations into spectral space, as found in spectral models such as OpenIFS, enact a length scale decomposition of the prognostic fields. Utilizing this, we introduce a reduced-precision emulator into the spectral space calculations and optimize the precision necessary to achieve forecasts comparable with double and single precision. On weather forecasting time scales, larger length scales require higher numerical precision than smaller length scales. On decadal time scales, half precision is still sufficient precision for everything except the global mean quantities.

Funder

Office of Naval Research

Natural Environment Research Council

H2020 European Research Council

Royal Society

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference18 articles.

1. Controlling the false discovery rate: A practical and powerful approach to multiple testing;Benjamini;J. Roy. Stat. Soc. B,1995

2. Stochastic representation of model uncertainties in the ECMWF ensemble prediction system;Buizza;Quart. J. Roy. Meteor. Soc.,1999

3. Stochastic parameterization and El Niño–Southern Oscillation;Christensen;J. Climate,2017

4. rpe v5: An emulator for reduced floating-point precision in large numerical simulations;Dawson;Geosci. Model Dev.,2017

5. Benchmark tests for numerical weather forecasts on inexact hardware;Düben;Mon. Wea. Rev.,2014

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3