Mixed-precision computing in the GRIST dynamical core for weather and climate modelling

Author:

Chen Siyuan,Zhang YiORCID,Wang Yiming,Liu Zhuang,Li Xiaohan,Xue Wei

Abstract

Abstract. Atmosphere modelling applications are becoming increasingly memory-bound due to the inconsistent development rates between processor speeds and memory bandwidth. In this study, we mitigate memory bottlenecks and reduce the computational load of the Global–Regional Integrated Forecast System (GRIST) dynamical core by adopting a mixed-precision computing strategy. Guided by an application of the iterative development principle, we identify the coded equation terms that are precision insensitive and modify them from double to single precision. The results show that most precision-sensitive terms are predominantly linked to pressure gradient and gravity terms, while most precision-insensitive terms are advective terms. Without using more computing resources, computational time can be saved, and the physical performance of the model is largely kept. In the standard computational test, the reference runtime of the model's dry hydrostatic core, dry nonhydrostatic core, and the tracer transport module is reduced by 24 %, 27 %, and 44 %, respectively. A series of idealized tests, real-world weather and climate modelling tests, was performed to assess the optimized model performance qualitatively and quantitatively. In particular, in the long-term coarse-resolution climate simulation, the precision-induced sensitivity can manifest at the large scale, while in the kilometre-scale weather forecast simulation, the model's sensitivity to the precision level is mainly limited to small-scale features, and the wall-clock time is reduced by 25.5 % from the double- to mixed-precision full-model simulations.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3