Abstract
Abstract. This paper describes the rpe (reduced-precision emulator) library which has the capability to emulate the use of arbitrary reduced floating-point precision within large numerical models written in Fortran. The rpe software allows model developers to test how reduced floating-point precision affects the result of their simulations without having to make extensive code changes or port the model onto specialized hardware. The software can be used to identify parts of a program that are problematic for numerical precision and to guide changes to the program to allow a stronger reduction in precision.The development of rpe was motivated by the strong demand for more computing power. If numerical precision can be reduced for an application under consideration while still achieving results of acceptable quality, computational cost can be reduced, since a reduction in numerical precision may allow an increase in performance or a reduction in power consumption. For simulations with weather and climate models, savings due to a reduction in precision could be reinvested to allow model simulations at higher spatial resolution or complexity, or to increase the number of ensemble members to improve predictions. rpe was developed with a particular focus on the community of weather and climate modelling, but the software could be used with numerical simulations from other domains.
Funder
European Research Council
Reference30 articles.
1. Arakawa, A. and Lamb, V. R.: Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model, in: Methods in Computational Physics: Advances in Research and Applications, edited by: Chang, J., Academic Press, New York, San Francisco, London, 17, 173–265, 1977.
2. Berger, S. A. and Stamatakis, A.: Accuracy and Performance of Single versus Double Precision Artihmetics for Maximum Liklihood Phylogeny Reconstruction, in: Parallel Processing and Applied Mathematics: 8th International Conference, PPAM 2009, Wroclaw, Poland, 13–16 September, 2009, 270–279, 2010.
3. Cooper, F. C. and Zanna, L.: Optimisation of an Idealised Ocean Model, Stochastic Parameterisation of Sub-Grid Eddies, Ocean Model., 88, 38–53, https://doi.org/10.1016/j.ocemod.2014.12.014, 2015.
4. Dawson, A. and Düben, P. D.: aopp-pred/rpe: v5.0.0, https://doi.org/10.5281/zenodo.154483, 2016.
5. Dawson, A. and Düben, P. D.: aopp-pred/rpe-examples: gmd-2016-247, https://doi.org/10.5281/zenodo.803274, 2017.
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献