Tornadogenesis in a High-Resolution Simulation of the 8 May 2003 Oklahoma City Supercell

Author:

Schenkman Alexander D.1,Xue Ming2,Hu Ming3

Affiliation:

1. Center for Analysis and Prediction of Storms, University of Oklahoma, Norman, Oklahoma

2. Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, Oklahoma

3. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado

Abstract

Abstract A 50-m-grid-spacing Advanced Regional Prediction System (ARPS) simulation of the 8 May 2003 Oklahoma City tornadic supercell is examined. A 40-min forecast run on the 50-m grid produces two F3-intensity tornadoes that track within 10 km of the location of the observed long-track F4-intensity tornado. The development of both simulated tornadoes is analyzed to determine the processes responsible for tornadogenesis. Trajectory-based analyses of vorticity components and their time evolution reveal that tilting of low-level frictionally generated horizontal vorticity plays a dominant role in the development of vertical vorticity near the ground. This result represents the first time that such a mechanism has been shown to be important for generating near-surface vertical vorticity leading to tornadogenesis. A sensitivity simulation run with surface drag turned off was found to be considerably different from the simulation with drag included. A tornado still developed in the no-drag simulation, but it was much shorter lived and took a substantially different track than the observed tornadoes as well as the simulated tornadoes in the drag simulation. Tilting of baroclinic vorticity in an outflow surge may have played a role in tornadogenesis in the no-drag simulation.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 113 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3