Accounting for the Error due to Unresolved Scales in Ensemble Data Assimilation: A Comparison of Different Approaches

Author:

Hamill Thomas M.1,Whitaker Jeffrey S.2

Affiliation:

1. University of Colorado, and NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado

2. NOAA–CIRES Climate Diagnostics Center, Boulder, Colorado

Abstract

Abstract Insufficient model resolution is one source of model error in numerical weather predictions. Methods for parameterizing this error in ensemble data assimilations are explored here. Experiments were conducted with a two-layer primitive equation model, where the assumed true state was a T127 forecast simulation. Ensemble data assimilations were performed with the same model at T31 resolution, assimilating imperfect observations drawn from the T127 forecast. By design, the magnitude of errors due to model truncation was much larger than the error growth due to initial condition uncertainty, making this a stringent test of the ability of an ensemble-based data assimilation to deal with model error. Two general methods, “covariance inflation” and “additive error,” were considered for parameterizing the model error at the resolved scales (T31 and larger) due to interaction with the unresolved scales (T32 to T127). Covariance inflation expanded the background forecast members’ deviations about the ensemble mean, while additive error added specially structured noise to each ensemble member forecast before the update step. The method of parameterizing this model error had a substantial effect on the accuracy of the ensemble data assimilation. Covariance inflation produced ensembles with analysis errors that were no lower than the analysis errors from three-dimensional variational (3D-Var) assimilation, and for the method to avoid filter divergence, the assimilations had to be periodically reseeded. Covariance inflation uniformly expanded the model spread; however, the actual growth of model errors depended on the dynamics, growing proportionally more in the midlatitudes. The inappropriately uniform inflation progressively degradated the capacity of the ensemble to span the actual forecast error. The most accurate model-error parameterization was an additive model-error parameterization, which reduced the error difference between 3D-Var and a near-perfect assimilation system by ∼40%. In the lowest-error simulations, additive errors were parameterized using samples of model error from a time series of differences between T63 and T31 forecasts. Scaled samples of differences between model forecast states separated by 24 h were also tested as additive error parameterizations, as well as scaled samples of the T31 model state’s anomaly from the T31 model climatology. The latter two methods produced analyses that were progressively less accurate. The decrease in accuracy was likely due to their inappropriately long spatial correlation length scales.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 144 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3