Pedestrian Positioning Using an Enhanced Ensemble Transform Kalman Filter

Author:

Sung Kwangjae1ORCID

Affiliation:

1. Department of Software, Sangmyung University, Cheonan-si 31066, Republic of Korea

Abstract

Due to the unavailability of GPS indoors, various indoor pedestrian positioning approaches have been designed to estimate the position of the user leveraging sensory data measured from inertial measurement units (IMUs) and wireless signal receivers, such as pedestrian dead reckoning (PDR) and received signal strength (RSS) fingerprinting. This study is similar to the previous study in that it estimates the user position by fusing noisy positional information obtained from the PDR and RSS fingerprinting using the Bayes filter in the indoor pedestrian positioning system. However, this study differs from the previous study in that it uses an enhanced state estimation approach based on the ensemble transform Kalman filter (ETKF), called QETKF, as the Bayes filer for the indoor pedestrian positioning instead of the SKPF proposed in the previous study. The QETKF estimates the updated user position by fusing the predicted position by the PDR and the positional measurement estimated by the RSS fingerprinting scheme using the ensemble transformation, whereas the SKPF calculates the updated user position by fusing them using both the unscented transformation (UT) of UKF and the weighting method of PF. In the field of Earth science, the ETKF has been widely used to estimate the state of the atmospheric and ocean models. However, the ETKF algorithm does not consider the model error in the state prediction model; that is, it assumes a perfect model without any model errors. Hence, the error covariance estimated by the ETKF can be systematically underestimated, thereby yielding inaccurate state estimation results due to underweighted observations. The QETKF proposed in this paper is an efficient approach to implementing the ETKF applied to the indoor pedestrian localization system that should consider the model error. Unlike the ETKF, the QETKF can avoid the systematic underestimation of the error covariance by considering the model error in the state prediction model. The main goal of this study is to investigate the feasibility of the pedestrian position estimation for the QETKF in the indoor localization system that uses the PDR and RSS fingerprinting. Pedestrian positioning experiments performed using the indoor localization system implemented on the smartphone in a campus building show that the QETKF can offer more accurate positioning results than the ETKF and other ensemble-based Kalman filters (EBKFs). This indicates that the QETKF has great potential in performing better position estimation with more accurately estimated error covariances for the indoor pedestrian localization system.

Funder

Sangmyung University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Krizhevsky, A., Sutskever, I., and Hinton, G.E. (2012, January 3–6). ImageNet Classification with Deep Convolutional Neural Networks. Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, NV, USA.

2. Scale-Aware Fast R-CNN for Pedestrian Detection;Li;IEEE Trans. Multimed.,2018

3. Zhang, L., Lin, L., Liang, X., and He, K. (2016, January 11–14). Is Faster R-CNN Doing Well for Pedestrian Detection?. Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands.

4. Illumination-aware faster R-CNN for robust multispectral pedestrian detection;Li;Pattern Recognit.,2019

5. Lan, W., Dang, J., Wang, Y., and Wang, S. (2018, January 5–8). Pedestrian Detection Based on YOLO Network Model. Proceedings of the 2018 IEEE International Conference on Mechatronics and Automation (ICMA), Changchun, China.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Positioning Using Wireless Networks: Applications, Recent Progress, and Future Challenges;IEEE Journal on Selected Areas in Communications;2024-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3