Uncertainty Quantification When Learning Dynamical Models and Solvers With Variational Methods

Author:

Lafon N.1ORCID,Fablet R.2ORCID,Naveau P.1

Affiliation:

1. Laboratoire des Sciences du Climat et de l’Environnement EstimR IPSL‐CNRS CEA Saclay Gif‐sur‐Yvette France

2. IMT Atlantique UMR CNRS Lab‐STICC Brest France

Abstract

AbstractIn geosciences, data assimilation (DA) addresses the reconstruction of a hidden dynamical process given some observation data. DA is at the core of operational systems such as weather forecasting, operational oceanography and climate studies. Beyond the reconstruction of the mean or most likely state, the inference of the state posterior distribution remains a key challenge, that is, quantify uncertainties as well as to inform intrinsical stochastic variabilities. Indeed, DA schemes, such as variational DA and Kalman methods, can have difficulty in dealing with complex non‐linear processes. A growing literature investigates the cross‐fertilization of DA and machine learning. This study proposes an end‐to‐end neural scheme based on a variational Bayes inference formulation to jointly address DA and uncertainty quantification. It combines an Evidence Lower BOund variational cost to a trainable gradient‐based solver to infer the state posterior probability distribution function given observation data. The inference of the posterior and the trainable solver are learnt jointly. We demonstrate the relevance of the proposed scheme for a Gaussian parameterization of the posterior and different case‐study experiments, including Lorenz 63 dynamics and river flow measurements. A benchmark with respect to state‐of‐the‐art schemes is provided.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3