PDF Parameterization of Boundary Layer Clouds in Models with Horizontal Grid Spacings from 2 to 16 km

Author:

Larson Vincent E.1,Schanen David P.1,Wang Minghuai2,Ovchinnikov Mikhail2,Ghan Steven2

Affiliation:

1. University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

2. Pacific Northwest National Laboratory, Richland, Washington

Abstract

Abstract Many present-day numerical weather prediction (NWP) models are run at resolutions that permit deep convection. In these models, however, the boundary layer turbulence and boundary layer cloud features are still grossly underresolved. Underresolution is also present in climate models that use a multiscale modeling framework (MMF), in which a convection-permitting model is run in each grid column of a global general circulation model. To better represent boundary layer clouds and turbulence in convection-permitting models, a parameterization was developed that models the joint probability density function (PDF) of vertical velocity, heat, and moisture. Although PDF-based parameterizations are more complex and computationally expensive than many other parameterizations, in principle PDF parameterizations have several advantages. For instance, they ensure consistency of liquid (cloud) water and cloud fraction; they avoid using separate parameterizations for different cloud types such as cumulus and stratocumulus; and they have an appropriate formulation in the “terra incognita” in which updrafts are marginally resolved. In this paper, an implementation of a PDF parameterization is tested to see whether it improves the simulations of a state-of-the-art convection-permitting model. The PDF parameterization used is the Cloud Layers Unified By Binormals (CLUBB) parameterization. The host cloud-resolving model used is the System for Atmospheric Modeling (SAM). SAM is run both with and without CLUBB implemented in it. Simulations of two shallow cumulus (Cu) cases and two shallow stratocumulus (Sc) cases are run in a 3D configuration at 2-, 4-, and 16-km horizontal grid spacings. Including CLUBB in the simulations improves some of the simulated fields—such as vertical velocity variance, horizontal wind fields, cloud water content, and drizzle water content—especially in the two Cu cases. Implementing CLUBB in SAM improves the simulations slightly at 2-km horizontal grid spacing, significantly at 4-km grid spacing, and greatly at 16-km grid spacing. Furthermore, the simulations that include CLUBB exhibit a reduced sensitivity to horizontal grid spacing.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3