A Positive Low Cloud–Sea Surface Temperature Feedback in the East Asian Marginal Seas during El Niño Mature Winters and Their Following Spring

Author:

Guo Zhun1ORCID,Furtado Kalli2,Zhou Tianjun3,Larson Vincent E.45,Zhang Ling6

Affiliation:

1. a Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

2. b Met Office, Exeter, United Kingdom

3. c LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

4. d Department of Mathematical Sciences, University of Wisconsin–Milwaukee, Milwaukee, Wisconsin

5. e Pacific Northwest National Laboratory, Richland, Washington

6. f School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China

Abstract

Abstract During the winter and subsequent spring of an El Niño year, the East Asian marginal sea (EAMS) exhibits positive sea surface temperature anomalies (SSTAs) and fewer low clouds, while the western North Pacific experiences negative SSTAs. In this study, we suggest that the positive SSTAs in EAMS are maintained by a positive low cloud–SST feedback. In neutral winters and springs, the EAMS is covered by low clouds, which have a cooling effect on surface temperatures. During an El Niño year, a western North Pacific anomalous anticyclone is established, and along its northwestern flank, there are favorable conditions for convergence of moisture and weaker surface latent heat flux over the EAMS. Once a positive SSTA has been established, a further reduction of turbulent mixing results in less low cloud and enhanced solar heating of the ocean mixed layer; this reinforces and maintains both the positive SSTA and the lack of low cloud via a positive feedback mechanism. The concurrent increase of low cloud–SST feedback and anticyclone circulation strengths is evident in the coupled-model simulations from phase 6 of the Coupled Model Intercomparison Project. Furthermore, sensitivity experiments, performed with the atmospheric components of Community Earth System Model (CESM2), reveal that a positive SSTA helps to maintain the western North Pacific anomalous anticyclone. Four pacemaker-coupled experiments by CESM2, with sea surface temperature in the equatorial Pacific restored to the observational anomalies plus the model climatology and altered low cloud feedback over EAMS, suggest that the low cloud–SST feedback results in more than the maintenance of a positive SSTA over the EAMS: the positive feedback is also a previously overlooked mechanism for the maintenance of the western North Pacific anomalous anticyclone. Significance Statement The East Asian marginal sea (EAMS) and western North Pacific are important areas that bridge El Niño and the climate of East Asia. Unlike the cold sea surface temperature anomaly (SSTA) over the western North Pacific during El Niño, the positive SSTA over EAMS, which is covered by winter low cloud, has received less attention. We suggest that a “low cloud–SST” feedback—namely, one in which decreasing low-level clouds allows more sunlight to strike the ocean surface and favors higher SST—maintains the positive SSTA over EAMS. We also configure a widely used atmospheric model with a set of preset SSTA patterns that mimic different climate patterns. Our experiments with different climate patterns and CMIP6 historical runs show that the low cloud–SST feedback (through the positive SSTA) is a possible supplementary mechanism for reinforcing the WNP anomalous anticyclone.

Funder

National Natural Science Foundation of China

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference50 articles.

1. Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models;Bony, S.,2005

2. Sea surface temperature and large-scale circulation influences on tropical greenhouse effect and cloud radiative forcing;Bony, S.,1997

3. How well do we understand and evaluate climate change feedback processes?;Bony, S.,2006

4. Mechanisms of marine low cloud sensitivity to idealized climate perturbations: A single-LES exploration extending the CGILS cases;Bretherton, C. S.,2013

5. Cloud feedback mechanisms and their representation in global climate models;Ceppi, P.,2017

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3