“1D+4DVAR” Assimilation of NCEP Stage-IV Radar and Gauge Hourly Precipitation Data at ECMWF

Author:

Lopez Philippe1,Bauer Peter1

Affiliation:

1. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Abstract

Abstract The one- plus four-dimensional variational data assimilation (“1D+4DVAR”) method currently run in operations at ECMWF with rain-affected radiances from the Special Sensor Microwave Imager is used to study the potential impact of assimilating NCEP stage-IV analyses of hourly accumulated surface precipitation over the U.S. mainland. These data are a combination of rain gauge measurements and observations from the high-resolution Doppler Next-Generation Weather Radars. Several 1D+4DVAR experiments have been run over a month in spring 2005. First, the quality of the precipitation forecasts in the control experiment is assessed. Then, it is shown that the impact of the assimilation of the additional rain observations on global scores of dynamical fields and temperature is rather neutral, while precipitation scores are improved for forecast ranges up to 12 h. Additional 1D+4DVAR experiments in which all moisture-affected observations are removed over the United States demonstrate that the NCEP stage-IV precipitation data on their own can clearly be beneficial to the analyses and subsequent forecasts of the moisture field. This result suggests that the potential impact of precipitation observations is overshadowed by the influence of other high-quality humidity observations, in particular, radiosondes. It also confirms that the assimilation of precipitation observations has the ability to improve the quality of moisture analyses and forecasts in data-sparse regions. Finally, the limitations inherent in the current assimilation of precipitation data, their implications for the future, and possible ways of improvement are discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference44 articles.

1. Andersson, E., M.Fisher, E.Hólm, L.Isaksen, G.Radnóti, and Y.Trémolet, 2005: Will the 4DVAR approach be defeated by nonlinearity? ECMWF Tech. Memo. 479, Reading, United Kingdom, 26 pp.

2. Analysis and forecast impact of the main humidity observing systems.;Andersson;Quart. J. Roy. Meteor. Soc.,2007

3. Direct assimilation of multichannel microwave brightness temperatures and impact on mesoscale numerical weather prediction over the TOGA COARE domain.;Aonashi;J. Meteor. Soc. Japan,1999

4. Baldwin, M. E., and K. E.Mitchell, 1996: The NCEP hourly multi-sensor U.S. precipitation analysis. Preprints, 11th Conf. on Numerical Weather Prediction, Norfolk, VA, Amer. Meteor. Soc., J95–J96.

5. Hydrometeor retrieval accuracy using microwave window and sounding channel observations.;Bauer;J. Appl. Meteor.,2005

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3