Seasonal Soil Moisture Drought Prediction over Europe Using the North American Multi-Model Ensemble (NMME)

Author:

Thober Stephan1,Kumar Rohini1,Sheffield Justin2,Mai Juliane1,Schäfer David1,Samaniego Luis1

Affiliation:

1. Helmholtz Centre for Environmental Research–UFZ, Leipzig, Germany

2. Department of Civil and Environmental Engineering, Princeton University, Princeton, New Jersey

Abstract

Abstract Droughts diminish crop yields and can lead to severe socioeconomic damages and humanitarian crises (e.g., famine). Hydrologic predictions of soil moisture droughts several months in advance are needed to mitigate the impact of these extreme events. In this study, the performance of a seasonal hydrologic prediction system for soil moisture drought forecasting over Europe is investigated. The prediction system is based on meteorological forecasts of the North American Multi-Model Ensemble (NMME) that are used to drive the mesoscale hydrologic model (mHM). The skill of the NMME-based forecasts is compared against those based on the ensemble streamflow prediction (ESP) approach for the hindcast period of 1983–2009. The NMME-based forecasts exhibit an equitable threat score that is, on average, 69% higher than the ESP-based ones at 6-month lead time. Among the NMME-based forecasts, the full ensemble outperforms the single best-performing model CFSv2, as well as all subensembles. Subensembles, however, could be useful for operational forecasting because they are showing only minor performance losses (less than 1%), but at substantially reduced computational costs (up to 60%). Regardless of the employed forecasting approach, there is considerable variability in the forecasting skill ranging up to 40% in space and time. High skill is observed when forecasts are mainly determined by initial hydrologic conditions. In general, the NMME-based seasonal forecasting system is well suited for a seamless drought prediction system as it outperforms ESP-based forecasts consistently over the entire study domain at all lead times.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3