Enhancing data-driven soil moisture modeling with physically-guided LSTM networks

Author:

Geng Qingtian,Yan Sen,Li Qingliang,Zhang Cheng

Abstract

In recent years, deep learning methods have shown significant potential in soil moisture modeling. However, a prominent limitation of deep learning approaches has been the absence of physical mechanisms. To address this challenge, this study introduces two novel loss functions designed around physical mechanisms to guide deep learning models in capturing physical information within the data. These two loss functions are crafted to leverage the monotonic relationships between surface water variables and shallow soil moisture as well as deep soil water. Based on these physically-guided loss functions, two physically-guided Long Short-Term Memory (LSTM) networks, denoted as PHY-LSTM and PHYs-LSTM, are proposed. These networks are trained on the global ERA5-Land dataset, and the results indicate a notable performance improvement over traditional LSTM models. When used for global soil moisture forecasting for the upcoming day, PHY-LSTM and PHYs-LSTM models exhibit closely comparable results. In comparison to conventional data-driven LSTM models, both models display a substantial enhancement in various evaluation metrics. Specifically, PHYs-LSTM exhibits improvements in several key performance indicators: an increase of 13.6% in Kling-Gupta Efficiency (KGE), a 20.7% increase in Coefficient of Determination (R2), an 8.2% reduction in Root Mean Square Error (RMSE), and a 4.4% increase in correlation coefficient (R). PHY-LSTM also demonstrates improvements, with a 14.8% increase in KGE, a 19.6% increase in R2, an 8.2% reduction in RMSE, and a 4.4% increase in R. Additionally, both models exhibit enhanced physical consistency over a wide geographical area. Experimental results strongly emphasize that the incorporation of physical mechanisms can significantly bolster the predictive capabilities of data-driven soil moisture models.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3