Comparison, Validation, and Transferability of Eight Multiyear Global Soil Wetness Products

Author:

Dirmeyer Paul A.1,Guo Zhichang1,Gao Xiang1

Affiliation:

1. Center for Ocean–Land–Atmosphere Studies, Calverton, Maryland

Abstract

Abstract The characteristics of eight global soil wetness products, three produced by land surface model calculations, three from coupled land–atmosphere model reanalyses, and two from microwave remote sensing estimates, have been examined. The goal of this study is to determine whether there exists an optimal dataset for the initialization of the land surface component of global weather and climate forecast models. Their abilities to simulate the phasing of the annual cycle and to accurately represent interannual variability in soil wetness by comparing to available in situ measurements are validated. Because soil wetness climatologies vary greatly among land surface models, and models have different operating ranges for soil wetness (i.e., very different mean values, variances, and hydrologically critical thresholds such as the point where evaporation occurs at the potential rate or where surface runoff begins), one cannot simply take the soil wetness field from one product and apply it to an arbitrary land surface scheme (LSS) as an initial condition without experiencing some sort of initialization shock. A means of renormalizing soil wetness is proposed based on the local statistical properties of this field in the source and target models, to allow a large number of climate models to apply the same initialization in multimodel studies or intercomparisons. As a test of feasibility, renormalization among the model-derived products is applied to see how it alters the character of the soil wetness climatologies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference43 articles.

1. Using the Special Sensor Microwave Imager to monitor land surface temperatures, wetness, and snow cover.;Basist;J. Appl. Meteor,1998

2. The anomalous rainfall over the United States during July 1993: Sensitivity to land surface parameterization and soil moisture anomalies.;Beljaars;Mon. Wea. Rev,1996

3. Impact of bias correction to reanalysis products on simulation of North American soil moisture and hydrologic fluxes.;Berg,2003

4. A simple ocean data assimilation analysis of the global upper ocean 1950– 95. Part I: Methodology.;Carton;J. Phys. Oceanogr,2000

5. A global oceanic data assimilation system.;Derber;J. Phys. Oceanogr,1989

Cited by 114 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3